BATCH: ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

1 The Signature Molecular Descriptor. 4. Canonizing Molecules Using Extended
2 Valence Sequences
3 Jean-Loup Faulon;*Michael J. Collins;, and Robert D. Cafr
4 Departments of Computational Biology, Cryptography, and Discrete Algorithms and Mathematics,
5 Sandia National Laboratories, P.O. Box 969, MS 9951, Livermore, California 94551, and Department of
6 Computer Science MSCO01 11301 1, University of New Mexico, Albuquerque, New Mexico 87131-0001
7 Received August 20, 2003
8 We present a new algorithm to canonize molecular graphs using the signature molecular descriptor introduced
9 in the previous papers of this series. While developed specifically for molecular structures, the algorithm
10 can be used for any graph and is not limited to acyclic graphs, planar graphs, bounded valence, or bounded
11 genus graphs, for which polynomial time algorithms exist. The algorithm is tested with benzenoid
12 hydrocarbons and a database of 126 705 organic compounds. The algorithm’s performances are compared
13 against Brendan Mc Kay’s Nauty algorithm, which is believed to be the fastest graph canonization algorithm
14 for general graphs, with five series of graphs each comprising up to 30 000 vertices: 2D meshes
15 (pericondensed benzenoids), 3D cages (fullerenes and nanotubes), 3D meshes (crystal lattices), 4D cages,
16 and power law graphs (protein and gene networks). The algorithm can be downloaded as an open source
17 code at http://www.cs.sandia.gevfaulon/QSAR.
18
19 INTRODUCTION used Brendan McKay's Nauty algorithttwhich is believed 47

)) to be the fastest graph canonization algorithm. In the curremt
20 The molecular descriptor we cadignatureis based on paper we propose a novel canonization algorithm de faeto
21 extended valence sequences. An extended valence SequencRyplacing steps 24 of the above procedure. 50
22 or molecular signature, is a vector of occurrence numbers Beyond canonizing signatures, our proposed algorithm ean
23 of extended valences, or atomic signatures. The extended,|q, he used to canonize molecular graphs. Accordings1o
24 valence of an atom is a canonical representation of the proposition 4 of our first paper, for any given molecule arsd
25 topological environment of the considered atom up to a any given height greater than the diameter of the molecuse,
26 predefined height. The first papesf the series investigates oo can reconstruct in linear time the entire molecular grash
27 the use of the signature in quantitgtive structtaetivity from any of its atomic signatures. Thus, any algorithsa
28 relationship (QSAR) and quantitative Structfoperty canonizing a signature will also canonize a molecular graph
29 relationship (QSPR) analyses, the second PapeIPOSes 54 |ong as the signature’s height is greater than the diameter
30 an algorithm for enumerating molecules from signatures, and ¢ o graph. 59
31 the third paper presents an example of inverse-QSAR Graph canonization, along with graph isomorphism, asd
32 analysis using signatures to design ICAM-1 inhibitory automorphism partitio,ning are problems that have ,befan
33 peptides. As described in our first paper, atomic Signaturesextensively studied both in computer science and computa-
34 are computed in five steps. (1) A subgraph is constructed tional chemistry. While none of these problems has bean
% containing all atoms and bonds that are at a distance O\ to pe infractable (NP-complete), no polynomial tinee
3% greater .than the signature height from th(_a probed_atom, (2)general solutions are known. Yet these problems are tractable
37 the vertices of the subgraph are labeled in canonical order,and can be solved efficiently for several restricted classes
38 (3) a tree spanning all the edges of the canonical subgraphOf graphs, to one of which molecular graphs belong. In 1998
39 is constructed, (4) all canonical labels that appear only one one of us’ showed how to transform molecular graphs into
40 time are r_emoved, anc_i (5) the signature is writf[en by reading simple bounded valence graphs, class of graphs wherese
4 the tree in a depth-first o_rder_. We proved in that paper isomorphism and canonization have theoretically been shawn
42 (proposition 1) that atomic signatures can be stored in to be solvable in polynomial timeEven though boundedr1
43 polynomial space (linear for molecular graphs) and can valence graphs can potentially be canonized efficiently, 1o
a4 theoretically be computed in polynomial time (proposition -, +tica| algorithm based on the above results has ever baen
45 7). The most computationally intensive step in computing published, and computational chemists have continued
46 the signature is the canonization step. In our first paper we !

developing heuristics to canonize molecufiés. 75
: Along these lines, the recent IUPAC project IChl is aimed
e_r;;f:’rgfj&gﬂ%”éﬁé‘g‘;gehone: (925) 294-1279; fax: (925) 294-3020; ¢ producing a canonizer available to every chng’nist. 7
T Computational Biology Department, Sandia National Laboratories. To canonize a molecular graph, one has to find a unigue
* Cryptography Department, Sandia National Laboratories, and the representation that is independent of the initial labeling of
University of New Mexico. the atoms. Relabeling the atoms in order to minimize @r

§ Discrete Algorithms and Mathematics Department, Sandia National atv a) h
Laboratories. maximize the bond list or the upper triangle of the adjaceray

10.1021/ci0341823 CCC: $27.50 © xxxx American Chemical Society
Published on Web 00/00/000PPAGE EST: 9.2

BATCH: ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

B J. Chem. Inf. Comput. Sci. FAULON ET AL.

12

| 3
A / ASVAN SN NN N
/‘ ‘\ /‘ ‘\ /‘ ‘\ 9 8 6 7 13 1611 12 10
10 9 14 14 13 15 15 9 W\
15 1L | 8 10 9 14 16 13 15
15 14 /
(b) ©
atom no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
atom types COoO|(Cl|C2|Cl1|Cl1|C2|C2|C2|C3|C2(|C2|Cc2|Cc2|C3|C3|C2
and number
of parents
invariant 1 2 3 2 2 3 3 3 4 3 3 3 3 4 4 3
(d)

Figure 1. Atomic signature: (a) Schlegel diagram of a cage comprising 16 atoms; (b) signature tree of atom 1; (c) DAG representation
of the signature tree of atom 1; (d) initial invariants.

82 matrix of a graph are examples of canonization. While a The root of the tree is atom itself. The first layer of the 107
83 canonization algorithm can be any procedure producing atree is composed of the neighborsxpfthe second layer is1os
84 unique code representing a graph, it is convenient to generatecomposed of the neighbors of the vertices of the first lay®ep
85 a code from which adjacency matrices can easily be except atonx. The construction proceeds one layer at a time
86 reconstructed. until no more layers can be added, that is until all the boncds
87 The paper is set up as follows. The first section presentsof G have been considered. Assuming the tree has been
88 the data structure used by the canonization algorithm. Theconstructed up to layet, layer | + 1 is constructed 113
89 second section describes the canonization algorithm. In theconsidering each vertexof layerl. Let z be a neighbor of 114
9 third section the correctness of the algorithm is informally Y in G. Vertexz and edgey,4 are added to layer + 1 if 115
o1 demonstrated. Finally, the performance of the algorithm is the edgesy,4 or [z,)] are not already present in the previouss
92 compared with that of Nauty in the last section. layers of the tree. To each vertex added to the tree, ame
associates an atom type and the initial label or numberiof
93 SIGNATURE DATA STRUCTURE the corresponding atom. Note that a given atom nunzberio
may appear several times in the tree (such as atom number
94 As already stated, our proposed algorithm canonizes a3 in Figure 1b) since it can be the neighbor of several atoms
95 signature and canonizes a molecular graph when the signatur@resent in the previous layer. It is important to note that whemn
9% height is greater than the diameter of the graph. In the an atom appears several times at a given layer, the subteee
97 remainder of the paper we will consider all signatures to be rooted at this atom will appear the same number of times
98 of heights greater than the diameters of the graphs to be(such as the subtree attached to atom 3 in Figure 1b). Wizn
99 canonized. a subtree appears several times at a given layer, it is 1ot
100 Let G be a molecular graph and Igtbe an atom ofG. necessary to duplicate its data structure; instead the data
101 We use the terminology atoms and bonds when referring to structure is stored only once, and references to the stared
102 the initial molecular graph, and the terms vertices and edgessubtree are added as many times as there are duplicates2ds
103 to describe signatures. As illustrated in Figure 1a,bxfer illustrated in Figure 1c, using references instead of duplicateal
104 1, the signature ok is a tree spanning all the bonds Gf subtrees results in a final representation known as a roated
105 We use the term tree here in a somewhat loose manner aslirected acyclic graph (rooted-DAG). A DAG must nats2

106 several vertices in the tree may correspond to the same atomcontain cycles when following the directions of the edgess

BATCH:

134
135
136
137
138
139
140
141
142

143

144
145
146
147
148
149
150
151
152
153
154
155
156
157

ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

CANONIZING MOLECULES USING VALENCE SEQUENCES J. Chem. Inf. Comput. SciC

Table 1. Canonized Molecular Signatures for Familiar Hydrocarbons

name atoms bonds col@rsstrings canonical molecular signatttre

hexane 6 5 0 1 2.0[c_J([c_Jlc_1([c_([c_]([c_D)

2.0[c_]([c_]([c_J([c_Inlc_I([c_1)

2.0[c_]([c_1([c_I(lc_I([c_I([c_D)

6.0[cp]([cp]([cp]([cp, 1D)cpl(ep](cp, 1)

2 4.0[cp](epl([epl(ep]([epl(ep, 1))Iep. 2] ([ep)(lep, 1)) [ep]([cpl([cp.2]))
4.0[cp]([ep]([ep]([ep, 1) [ep]([ep]([ep]([cp, 2D)ep]([ep, LT cpl([ep.2]))))
2.0[ep]([epl([ep)(lep. 1) [epl([ep](lep. 21 [epl([cpl(cp.2]) [ep)(iep.1])

pyrene 16 19 1 2 2.0[cp)([epl([ep)(ep.2][cpl(ep,3)Iep]([ep, ep]([cp.3D)) ep)([epl([ep.4DIcpl([ep, 11))(cp]

([ep]([ep,4D)lep)(lep,2]))
2.0[ep]([epl([ep)(lep. 2]([ep]([ep, 1)([ep]([ep.3])lep.41([cp] (fep.3DN)ep](lepl([ep. 1))
[ep]([epl([ep.2][ep]([cp](lep.4D)))))
4.0[cp](epl([epl(ep,) [ep]([epl(ep. 2] ([ep](lep. 3D Iep]([epl(ep. 2l[ep]([cp.4licp]([cp. 3]))
[ep]([ep, L[ep]([cp.4D))))
4.0[cp]([ep]([cpl(lep, 11([ep)(ep, 2][ep,3D)(ep)(lepl([ep. 2D))epl([ep]((cp]([cp.4])) cp]
([ep, 1][ep]([ep.4][cp](ep.3]))))
4.0[cp]([epl([epl(ep, L([ep)(iep, 2D Iep]([epl(er](ep. 3]([epl([ep.4D))cp]([ep. L[cp]
([ep,3][ep]([ep.2][cpI(lcp.41))))
coronene 24 30 1 2 6.0[cp)([ep]([ep](fep.2]([epl(iep.3MN)Iep]([epl([ep.4l([cpl(iep.S)N)ep](cpl([cp.4llcp]
&Cp,%gg)rg([cp.1][CIO,7]))[Cp]([0p,5][CP]([Cp,l]))))[CIO]([Cp,2][CIO]([CP,B][CP]([CDB][CD]
cp,
6.0[cp]([cp]([ep]([ep.2]([ep]([cp. 1][cp. 3]))[epI([cp.4][cpI([cp.1]))ep](lep.Sllepl(iep.41))cp]
([epl([ep. 2][ep]([ep.6][cpl([cp.3D)Icpl(lep, 71lep]([cp.6D))ep](lcpl((ep, 7DIcpl([c p.5]))
12.0[cp]([epl([ep](Tep, L]([ep](lep,2](ep]([ep. 3]lep.4]))lep, S([cpl(iep.41)Iep]([cpl(ep,S])))
[ep]([ep)((epl([ep,6]([c pl(ep, 7DN)ep]((ep. L]icpl([ep.6llcpl([ep. 2] cp]([cp, 7]icp] ([cp,3]))))))
fullerene C60 60 90 1 2 60.0[cp]([cp([cpl([cp.2]([cpl([cp,3]lcp.4]([ep]([cp,5]lcp,6]))) ep)(cp, 71([cp]([cp.8][cp. 9]
([ep](ep, 10][ep, L1])))(ep.3]([ep]([cp.9l[cp,€]([cp, 11]([ep, 12]([ep, 13])))))Icpl([cp, 14][cp]
([ep, 7][ep]([cp,15][cp,8]([cp]([cp, 16][cp, 10]([cp, 17]([cp, 13D)))N))(epl((cp]([cp, 18] ([cp]
([cp,19][cp,20]([cp)(ep,21][ep,22])))cpl([ep,23]([cpl([cp.24][cp, 25]([cp]([cp, 26] [cp,27]))))
[cp,19]([ep]([ep,25][ep,22]([cp,27]([cp, 1]([cp, 13])))))[ep, 14]([ep]([cp,23][cp, 15]([cp, 24]
([ep,16]([cp.26]([ep, L7D)MMNIcpl([epl((cp. 18][cp]([cp,28][cp]([ep,20][cp]([cp,29][cp,21]
([epl([ep. L[ep,30DMMIepl([ep.2][ep.28]([cpl([ep.4]lcp,29]([cp.5]([cp,30]([cp. 121))))))

=

benzene 6 6 0
naphthalene 10 11 1

a Maximum number of colors used to canonize signature strings and maximum number of signature strings generated for each atom. The number

of colors is the number of times the varialolén the canonized-signature scheme is incremented (line 12). The number of strings is the number of

times the canonized-signature algorithm executes line 6. The strings reported in column 6 are the canonical ones (the lexicographically largest
ones).? The canonical molecular signature is compiled after calculating the canonical signature string of each atom. All atomic signatures are

sorted in decreasing lexicographic order (according to the C language function strcmp). The number preceding each atomic signature is the numbe
of the atom having that signature. Hydrogen atoms have been removed for all compounds; atom type c_ stands for aliphatic carbon, and atom type

cp for aromatic carbon.

A rooted-DAG representation of a signature tree comprisesthe signatures for all atoms of the graph. We next explais
no more edges than twice the number of bonds of the initial how atomic signatures are canonized; the reader should keep
graph. Indeed, as illustrated in Figure 1c with bonds [7,6] in mind that the process described below is repeated foriadl
and [6,7] in the same layer, a bond may appear twice atoms. 161

depending on the direction it is crossed. Consequently, while The approach we have taken to canonize atomic signatuses
a signature tree may comprise numbers of vertices and edgeg; pased on the classical Hopcroft and Tarjan’s rooted-tuee
that may be exponentially larger than the numbers of atoms canonization algorithri Assuming we want to canonize aes
and bonds, its rooted-DAG representation has a size linearlyygoted tree, we first assign to each vertex of the tree an initie
proportional to the number of bonds of the molecular graph. inyariant. In our case, the initial vertex invariant is an integess
based on the atom type corresponding to the vertex. Next,
THE SIGNATURE CANONIZATION ALGORITHM the vertices are sorted according to their invariants layer oy

The algorithm described in this section computes and layer starting with those farthest away from the root. Afteso

canonizes the signature of a given atom in a molecular graph (he Vertices at layef are ordered, each vertex in layetro

The algorithm is repeated for all atoms, and the resulting ! — 1 IS given a new invariant, computed from its initiad71
atomic signatures are compiled into a molecular signature. invariant and the sorted list of the invariants of its neighbara

A canonical representation of the molecular signature is In layerl. Vertices in layet — 1 are sorted according to tha7s
obtained in a postprocess by sorting the atomic signaturesNeW |nvar|ants. The process is repeated until the rootiis
in decreasing lexicographic order (cf. examples in Table 1). "€ached. Using this simple procedure, the edges of eaeh
As mentioned earlier, the molecular graph can be recon- Vertex of tk_le tree are ordered in a unique manner bgsedLmn
structed from any of its atomic signatures. Consequently, asthe vertex mvanants. The rooted tree obtained following the
far as graph canonization is concerned, there is no need tg2dge ordering is canonical. 178
keep all atomic signatures, and the lexicographically largest We now describe in some detail how the above algorithim
atomic signature (i.e., the first one in the list) suffices to has been implemented to canonize a signature tree het 180
represent the graph in a uniqgue manner. Yet, to find the an atom of a molecular gragh. The signature tred,(x), is 181
largest atomic signature, one has to compute and canonizeepresented by a DAG rooted at To each atonm, one 1s2

BATCH: ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

D J. Chem. Inf. Comput. Sci. FAULON ET AL.
1
2/£\4\ 2/;\
/\ e/\12 1 3 3/\3 3/ \3 3 3
N /T IN /N /T IN N
6 7 16 1112 10 9 4 3 33 3 3 33 3 4
SN N /T IN SN T N /TN
10 9 14 14 16 13 15 15 9 10 8 3 3 44 4 3 3 4 4 4 3 3
15 1|5 1| 1|4 4| zlt ‘1 |
(@) (b)

1
3 2 2 3 |
\ 1.2 4 4 21 5
FET/EN\YSY AN NTAN
LN N /T IN RGN I
4 4 21 4 3 31 1 2 4 4 [| |
| | | | 1 1 1 1
1 1 1 1
(e ®
atom no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 15 16
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
layer | 4 0 0 0 0 0 0 0 1 3 1 0 0 2 4 4 2
no. 3 0 0 0 0 0 1 2 3 5 3 0 0 4 0 0 4
2 0 0 1 0 0 2 3 0 0 0 3 2 0 0 0 0
1 0 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
invariant 10 | 8 7 8 9 6 5 4 3 4 5 6 2 1 1 2
(€)

Figure 2. Vertex and atom invariants.: (a) signature tree of atom 1 in Figure 1; (b) same signature tree with initial invariants from Figure
1d; (c) vertex invariants after running Hopcreffarjan algorithm from the leaves to the root; (d) vertex invariants after running Hopcroft

Tarjan algorithm from the root to the leaves; (e) vertex invariants after running Hopdradffan algorithm for the second time, from the

leaves to the root; and (f) vertex invariants after running Hoperdétrjan algorithm for the second time, from the root to the leaves. The
algorithm stops as invariants are the same as in the previous run. (g) The corresponding atom vectors and atom invariants. The root is
located at layer O.

183 associates an atom type, a color, ca@r@énd an invariant, the number of parents, and the string is converted into @e
184 inv(a). Colors and invariants are integers no greater than integer following lexicographic ordering. The integer is nab7
185 the total number of atoms. To each vertexn T(x) one greater tham since there are no more thamlifferent strings. 198
186 associates a corresponding atom, atgmifi graphG and Examples of initial invariants are given in Figure 1d. 199
187 an invariant, invg). Since the signature tree is represented After initialization, the first step of the algorithm is taoo
188 by a rooted-DAG, for each vertex of any layerone can compute the invariants of the verticesTi(x) from the atom 201
189 access its parents in layer— 1 and its children in layer jnvariants The vertex invariants are computed twice, firabz
190 I+ 1 reading the tree layer by layer from the leaves to the raot
191 Prior to running the algorithm, all the invariants and colors and then from the root to the leaves. Unlike the classiced
192 are initialized. The initial color is O for all atoms. The initial Hopcroft-Tarjan algorithm, the tree must also be read frozos
193 invariant of any atona is computed from the atom type of the root to the leaves because in signature trees, some vertiges
194 a and the number of parengshas inT(x). More precisely, may have more than one parent; thus, the invariants for these

195 a string of characters is compiled from the atom type and vertices may be different, depending on the invariants of thaig

BATCH:

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

CANONIZING MOLECULES USING VALENCE SEQUENCES J. Chem. Inf. Comput. SciE

parents. We first examine the case where the tree is readmvarlant(a?omr(lﬂx) ,G) .

Input T(x) the signature-tree of atom x
from the leaves to the root. Starting at the last layer, to each=""—" ;"'\ siccular grapn
vertex we associate a pair of numbers composed of the coloroutput : Updated atoms invariants

and the invariant of the corresponding atom. Duplicated pairs

. . . . 1. repeat

are removed, and all nonidentical pairs are sorted in 2. invariant-vertex (T (x),child)
decreasing order. The vertex invariant becomes the order 0f3~ invariant-vertex(T(x),parent)

. for all vertices v of T(x)
the pair in the sorted list. Going to the layer above, to each 5 5. let 1 be the layer of v
vertex one assigns a vector of pairs composed of the colors. Vig (atom(v)) (1) = inv(v)
and the invariant of the corresponding atom and the pairs ;- ‘gf‘;iv i
for the children of the vertex. Duplicated vectors are o. For all atoms a of G do
removed, the remaining vectors are sorted in decreasmglo- a List-Vigy = List-Vig, U Vi (a)

. one
order, and the vertex invariant becomes the order of the ;" Semt List-Vy. in decreasing order
vertex in the sorted list. Note that these vertex invariants 13. for all atom a of G o
range from 1 tan since there are no more tharvertices in W e via) = order of Viw(a) n LiSt-Viw

a layer. The above procedure is repeated until the root iS1s. until the number of invariant values remain constant
reached. The algorithm is then run from the root to the leaves,

but this time, for any vertex, the vector invariant is composed exist, those with the maximum number of atoms are selected,
of the color and invariant of the corresponding atom and and if several orbits have the same number of atoms, ase
the invariants of the parents of the vertex. The algorithm is takes the one with the minimum invariant. For instancsg
given next and illustrated in Figure 2& according to Figure 2g, orbi{sl4,13,{13,16, {10,8, and 260
{6,12 all contain two atoms having more than one parené1
Orbit{14,13 is chosen in Figure 3, since it has the minimums2

invariant-vertex (T (x),relative)
Input: T(x) the signature-tree of atom x

relative is a parent or child relationship invariant. If no orbit can be found or the selected orbits

Output: Updated vertices invariants contains only one atom, then the process ends and dhe
1. List-Viy = o signature is printed (steps—). When an orbit is found 2e5
2. for all layers 1 of T(x) containing more than one atom, all the atoms of the orhits
> o e ton ST T v (atom ()) are colored one after another with the current color (steps
{inv(w) s.t. w is a relative of v} 10—14). In Figure 4, atoms 14 and 15 are colored one atea

5 List-Vipy = List-Viny U Viny (V) time with color 1. In both cases the algorithm stops aftemn
o ot List-vi, in decreasing order the next iteration since each atom becomes singularizedzin
8. for all vertices v of layer 1 its own orbit. The current color starts at 1 and is incremented
i dome inv(v) = order of Viw(v) in LiSt-Viw by 1 each time the algorithm calls itself (step 12). Note that
11. done each time an atom is colored, at the next iteration the ators

will be alone in its orbit. Since there are no more than274
Once invariants have been computed for all vertices, eachatoms to be colored, the algorithm cannot call itself mores
atom invariant is compiled from the invariant of all the thann times. 276
vertices corresponding to the atom. Precisely, for each atom,
an invariant vector is first initialized to zero, and then for canonize-signature (T(x),G,c,Sus)

Input: T(x) the signature-tree of atom x

each vertex corresponding to the atom, the invariant of the ¢ nolecular graph

vertex is assigned to tHecoordinate of the vector whete cucpuc: s, o cononical string (initialized to enpty string)

is the layer the vertex occurs. Once invariant Vectors are ;. . ariant-acom(z(x),c)

computed for all atoms, duplicated vectors are removed, thes: gereisien e sicee, of 8 bnce ommice seportizs o ress wveriance,

vectors are sorted in decreasing order, and the atom invariant — isvariant value such that all the atoms of O have at least two

L] . . parents.
becomes the order of the atom’s vector in the sorted list. 4. it [o] < 2 then
. . 5. color all uncolored atoms having two parents
The above process is repeated until the number of atom according to their invariant
invariants remains constant. Note that at each iteration, thes: £~ Ering-ejspature string (oot (1)), 1), 2)
number of invariants increases. Indeed, atom invariants are?- _ return S

fi

computed from vertex invariants, which in turn are computed 12; for all aton a in O do

from the atom invariants from the previous iteration. Because 12. s = canonize-signature (T (x) ,G,c+1, S

the number of invariants is at most the number of atoms, 1i. aone""" " = = °

the process cannot repeat itself more thratimes. The 15 FEEUED Sux

invariant-atom algorithm is given next and illustrated in

Figure 2g. As described in our first papérsignature strings arez77
The canonization algorithm illustrated in Figure 3 first printed by reading the signature tree in a depth-first orders

computes the invariants for all atoms running the invariant- Prior to printing signature strings, the children of all verticese

atom algorithm (step 1). Then in step 2, the atoms are are sorted according to their invariants taken in decreastag

partitioned into orbits such that all the atoms in a given orbit order. To avoid printing several times duplicated subtrees,

have the same invariant. In the next step (3) one searchesany subtree is printed only the first time it is read. This2

for an orbit containing atoms having at least two parents in operation necessitates maintaining a list of printed edges.

T(x). Note that these atoms have different invariants than The algorithm is given next and depicted in Figure 4, where:

atoms having only one parent, since the initial atom invariants atom 14 has been colored. The same signature stringsis

embrace the number of parents. When several such orbitsobtained when coloring atom 15. 286

BATCH: ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

F J. Chem. Inf. Comput. Sci. FAULON ET AL.

[N Akt N AN
o

() (b)

© (d)

Figure 3. Signature-canonization algorithm: (a) signature tree of atom 1 in Figure 1, where atom 14 is colored; (b) same signature tree
with initial invariants of Figure 2d; (c) vertex invariants after running the invariant-atom algorithm, where atom 14 is colored (note that
every orbit contains only one atom and the canonization algorithm stops after coloring atom 14); (d) vertex invariants after running the
invariant-atom algorithm where atom 15 is colored. The canonization algorithm stops after coloring atom 15.

print-signature-string(v,T(x) ,E) all possible colors are tested, all signature trees isomorpoic
Input: e vertex of T(x) to the initial one are generated and the coloring maximizisg
x) the signature-tree of atom x _ . . .
E a set of edges the signature string is kept as the canonical one. Thus, when
Output: a string of characters using a brute-force algorithm, if two atoms have the sarue
L. print ‘[canonized signature string, they are automorphic. The latter
2. print atom-type (atom(v)) statement is true with every algorithm generating—-1)! 308
Z. if (color(atom(v)) # 0) print ', color(atom(v)) colorings. Assume the signature canonization algorithm given
5 li”ff“;;ilé(v) - » return in the previous section is run with a graph such that all atoras
6. sort child(v) according to their invariants except the root, belong to the same orbit and have more than
7. print ‘(" one parent. While such a case may not exist, one can easty
8. for all child w of v in decreasing order do construct graphs (cages for instance) with orbits comprising
9. if [v,w] is not already in E then . R
10 E-E U [v,ul a number of atoms proportional to the molecular graph size;
11. print-signature-string (w,T (x) ,E) in such a case is smaller than the number of atoms but 5
12. fi nonetheless polynomially proportional to the graph size.dr®
e :iri’relt 'y the worst-case scenario, the first color will be assignedsta
15. return n — 1 atoms one after another. Once a color has been gigen
to an atom, the atom cannot be colored again since its ogloit
287 CORRECTNESS OF THE ALGORITHM contains only one element. However, all other atoms may
288 The canonization algorithm is deterministic and is inde- Still be in the same orbit, and if such is the case, all tha
289 pendent of the initial labeling of the atoms of the graph. In N — 2 remaining atoms will be colored one after another. sz
200 fact, the initial labels are never used by any of the the nextiteratiom — 3 atoms will be colored, and so ong2s
201 canonization subroutines. Consequently, in any given graph,until no more atoms can be colored. With the above scenatio
200 two automorphic atoms will produce the same canonized the algorithm will call itselfn — 1 times and will produce 325
203 signature string. We also need to show that when two atoms(n — 1)! colorings. In other words, the algorithm wils2e
204 have the same canonized signature, they necessarily argenerate allf— 1)! isomorphic representations of the initiad27
295 automorphic. In a typical brute-force canonization algorithm Signature tree, and thus two atoms having the same canonized
296 color 1 is assigned to all the atoms of the graph one after signature string are necessarily automorphic. The onty
297 another. For each resulting coloring, color 2 is assigned to difference between our algorithm and a brute-force algorittuo
208 the remainingh — 1 uncolored atoms, color 3 is assigned to is that when a coloring splits the remaining vertices into1
299 n — 2 atoms, and so on, resulting in a totalréfdifferent several orbits, the vertices that belong to different orbits watiz
300 colorings. Applied to a signature tree, a brute-force algorithm be colored with different colors. Atoms belong to differerts
301 would generate at mosih (— 1)! colorings since the root of orbits when their corresponding vertices in the signature tese

302 the tree does not have to be colored. Because for every atomhave different invariants (cf. invariant-atom algorithm in thes

BATCH: ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

CANONIZING MOLECULES USING VALENCE SEQUENCES J. Chem. Inf. Comput. Sci.G

(©) (d)

C
/I\ [C] ([C] ([C,2] ([C] ([C,3]1C,4]))
G < c [cl (fc,sl[c,3]([c,6]([c,11))))
AN /N / N\ [cl (el (e, 71 [c (e, 1] [c,81))

c2 C C C5 c2 c7 [c,51([c,8]([c,61)))I[cl(lc,2]
| \] / [c,71 (Ic,41(Ic,11))))
c Cs5 /0,3 c7 C‘i 08\ ca
C3 C4 C6 IjC,B C,6 C1
ci ®
(e)

Figure 4. Printing the signature string: (a) signature tree of atom 1 in Figure 1, where atom 14 has been colored; (b) same signature tree
with atom invariants of Figure 3c; (c) sighature tree with branches reordered according to atom invariants computed in b; (d) signature tree
where duplicated edges have been removed; (e) signature tree with atom type and colors. Atom 14 is colored 1; all other colors are enterec
in the order the atoms appear reading the tree in a depth-first order. Colors are added only to vertices appearing more than one time in the
signature tree given in d. (f) The corresponding signature string reading the tree in a depth-first order.

336 previous section). Now, according to the HopctoFarjan phic but are isopectral and have the same Baladbiadex!? 357
337 algorithm (cf. invariant-vertex algorithm in the previous The nonisomorphic graphs were found to have differest
338 section), two vertices with different invariants are not signatures. As in Table 1, no more than one color was used
339 automorphic, and for a given color, the signature string to canonize these graphs. 360
340 obtained by coloring the vertex with the smallest invariant

341 will always be smaller than the string obtained coloring the ALGORITHM PERFORMANCE 361
342 other vertex. It is thus unnecessary to color vertices belonging A database of 126 705 compounds was downloaded frgsn
343 to different orbits with the same color. Finally, atoms that the National Cancer Institute websife.This database 363
344 occur only one time in the signature tree do not have to be comprises various organic and organometallic compounels
345 colored. According to proposition 1 in our first paper, any up to 94 atoms. For each of the compounds the signatzsse
346 graph can be reconstructed from any of its canonical was computed and compared with the signature obtained afier
347 signature strings after the colors that appear only one timerandomly renumbering the atoms. As expected from the
348 in the string have been removed. previous section the signatures corresponding to the saase
349 Examples of canonized signature strings along with the compound were found to be identical. The CPU times taksa
350 number of colors used to generate them are given in Tableto compute the molecular signature of each compoundsaf
351 1 for familiar hydrocarbons. For all the compounds listed in the database are plotted in Figure 5. The entire databaseaxas
352 Table 1 the computations were duplicated with structures processed in 26 min CPU time, with a rate of about 8@
353 having different initial atom labels. The resulting canonized compounds/s. All runs were performed on a SGI/O2 works
354 signatures were found to be identical. The same exercise wastation. While the running time increased with the numbea
355 carried out for some difficult graphs given in Figures 3 and of atoms, we also observed that highly symmetrical coms

356 5 of the Rucker et al. papét.These graphs are nonisomor- pounds were slower to process. 376

BATCH:

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

cicall

USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

H J. Chem. Inf. Comput. Sci. FAULON ET AL.

10 < 10000 v
X
X
X
1000 X
m signature ><X
X nauty X
- 100 x
2 x
g O x
s Qo
a2 E 10 X Ly
© pat a® = g
8 SR
1 X m [
[|
-
X
0.1 4 [
0.01 T T r T T r T T -
0 10 20 30 40 50 60 70 80 90 100 ;
number of atoms 0.01
Figure 5. CPU times distribution for the National Cancer Institute’s 100 1000) 10000 100000
open database (opennci) of 126 705 organic compounds. Com- graph size
pounds processed in less than 0.02 s CPU time are not shown. Figure 7. Signature and Nauty canonization CPU times for 2D
meshes.
10000
X
X
1000 x
= signature x
X
X nauty X
100
X
E X []
o -
E 10 X L]
(a) (c) 2 y .t
o L]
1 []
X []
-
L]
0.1 - X
------------ L]
..... 0.01 ,
............ 100 1000 10000 100000
graph size
"""""" : Figure 8. Signature and Nauty canonization CPU times for 3D
meshes.
"""""" ek cages was chosen because it is a particularly hard classdor

P i i our algorithm, as initially all atoms are equivalent (i.e3gs
(b))) (d)) automorphic) and all atoms have six neighbors. The serigs
of power law graphs was chosen because gene and pratein
Figure 6. Examples of 2D mesh (a), 3D cage (b), 3D mesh (c), networks have recently been found to follow power I&#VS. 396
and 4D cage (d). For 3D cages the bonding sites (dashed lines) ony power law graph is a graph in which the number of verticess

the left side are merged with the right bonding sites, and the top . - . :
bonding sites are merged with the bottom ones. For 4D cages©f degreekis N« = Nol/k)?, whereNo is a constant angl is - 308

bonding sites of the left face are merged with those of the right & scaling exponent. We choge= 3, as this exponent hasg
face, bonding sites of the top face are merged with those of the been found to be between 2 and 3 for gene and protgin
bottom face, and bonding sites of the front face are merged with networks. Note that power law graphs are not necessaiily
those of the back face. : ; ;
planar, and the maximum degree of the vertices is not
To further assert our algorithm, we compared its perfor- bounded as with the previous series. In FigureslY we 403
mances with those of Nauty on five series of graphs, 2D report the CPU times taken to canonize the signature treeoaf
meshes, 3D cages, 3D meshes, 4D cages, and power lavone selected atom. For 2D and 3D meshes the selected atsm
graphs. All series of graphs contained up to 30 000 atoms.was chosen in one of the corners of the mesh. Note that4fee
Figure 6 depicts the general structure of the 2D and 3D corner atoms have a signature of greater height than 4twe
meshes and the 3D cage series. While these series do nabthers, thus maximizing the computational complexity fass
represent chemical compounds, they have the same topologiour algorithm. With 3D and 4D cages all atoms awes
cal characteristics, and the canonization results obtained onequivalent, therefore an atom was selected at random. Finalby
the series should be similar to those obtained on compoundswith power law graphs the atom with the largest degree was
of the same size. Furthermore, meshes and cages are highlgelected. The CPU times of our algorithm are plotted along
symmetrical graphs and thus should be difficult for our with the times obtained with Nauty, prior to running, Nautys
algorithm. The series of meshes were chosen since ben-atoms were partitioned, the selected atom was inserted into
zenoids and crystal lattices are particular types of 2D and its own orbit, and all other atoms were added to a secons
3D meshes. The series of 3D cage was selected becauserbit. Partitioning the atoms is an option offered by Nautys
fullerenes and nanotubes are 3D cages. The series of 4Dthat enabled us to make a fair comparison between the two

BATCH:

418
419

420
421
422
423
424

ci2all USER: jeh69
CANONIZING MOLECULES USING VALENCE SEQUENCES

10000

X
X
X
X
1000 1 X
m signature x x
X nauty x
100 x
X [
2 x .
L]
o X [] []
'E 10 . u"m
> X "]
g -
© -
1 - >-< o
X
0.1 .
X
L
0.01
100 1000 10000 100000
graph size

Figure 9. Signature and Nauty canonization CPU times for 3D

cages.
10000
X
X
1000 X
u signature x
ty X -
X nau
100 X agm
—_ X |}
) -
s ‘"
E 10 a X
=3 L}
g . X
1 -
L] X
0.1 «
0.01
100 1000 10000 100000
graph size
Figure 10. Signature and Nauty canonization CPU times for 4D
cages.
100000
X
X
10000 <
= signature
X nauty X
1000
— X
)
2 100 X
E x
g 10 x e
X |]
L}
1 x -
X - Ll
- a
0.1 .
]
X
0.01
100 1000 10000 100000
graph size

Figure 11. Signature and Nauty canonization CPU times for power

law graphs.

codes as in both cases at the beginning of the process one)
atom was selected as the root of a graph to be canonized.

For all series except power law graphs, exactly one color
was sufficient. Independently of the number of atoms, for
2D meshes 4 signature strings were generated, 6 strings were
constructed for 3D meshes, 8 strings for 3D cages, and 48)
strings for 4D cages. Power law graphs generally have few

DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823

DATE: December 24, 2003

J. Chem. Inf. Comput. Scil

symmetries, and it is unlikely that these symmetries oceus
at the same layers of a signature tree. It is therefore mzmt
surprising to find out that from 1000 to 30 000 atoms na7
colors are needed to canonize these graphs. From Figures
7—11 one concludes that Nauty is generally faster than eew
algorithm for graphs of small sizes, but, for all series, ths
reverse trend is observed as the graph sizes increases.431

CONCLUDING REMARKS 432

While we have shown earlier that our canonizations
algorithm might have the worst-case complexity of the brutea4
force algorithm, we have yet to find a graph for which thes
algorithm runs an exponential number of steps. In fact, 48
all tests carried out in the previous section, we find ther
number of strings produced to be a constant independentssf
the number of atoms. Furthermore, when canonizing atomig
signatures, as the number of atoms increases, we find @ar
algorithm to be substantially faster than Nauty. The worsgt1
case scenario that we have identified so far is with projective
planest® where four colors have to be assigned, thus
generating at most @f) signature strings. Graphs deriveaas
from projective planes are not necessarily relevant 4w
chemistry but are notoriously hard to canonize. They cem
efficiently be dealt with in the latest version of Nauty onlys?
after having been preprocessed with a special-purpese
subroutine that partitions the vertices. 449

The algorithm presented in this paper was coded 480
standard C language. The code reads Accelrys’s Cerius?
Polygraf and Insight formats, Tripos’s PDB and PFSas2
formats!® and MDL’s SDF format® Additionally, the code 453
can read general graphs in Nauty forrh@he code outputs 454
a signature file containing the molecular signature using #se
notations given in Table 1. An option is also available tBe
canonically relabel the input format. The code handles
covalently bonded compounds that may be composedasaf
several connected components. The code does not distinguish
stereoisomers. 460

ACKNOWLEDGMENT

Funding for this work was provided by the Math, Informass2
tion and Computer Science program of the U.S. Departmesst
of Energy and Sandia National Laboratories under Grant Mex
DE-AC04-76DP00789. 465

461

REFERENCES AND NOTES 466
(1) Faulon, J.-L.; Visco, J.; D. P.; Pophale, R. S. The Signature Molecular

Descriptor. 1. Extended Valence Sequences and Topological Indiges

J. Chem. Inf. Comput. S2003 43, 707—721. 469
(2) Faulon, J.-L.; Churchwell, C. J.; Visco, J. The Signature Moleculéro

Descriptor. 2. Enumerating Molcules from their Extended Valena&1

Sequences]. Chem. Inf. Comput. S@003 43, 722-734. 472
(3) Churchwell, C. J.; Rintoul, M. D.; Martin, S.; Visco, D.; Kotu, A.;473
Larson, R. S.; Sillerud, L. O.; Brown, D. C.; Faulon, J. L. The74
Signature Molecular Descriptor. 3. Inverse Quantitative Strueturet7s
Activity Relationship of ICAM-1 Inhibitory Peptided. Mol. Graphics 476
Modell,, in press. 477
McKay, B. D. Practical Graph Isomorphisr@ongr. Numerantium 478
1981, 30, 45-87. 479
(5) McKay, B. D.Nauty User’s GuidgVersion 2.2 (beta 6); 2003 (http://480

cs.anu.edu.au/people/bdm/nauty/). 481
(6) Faulon, J.-L. Isomorphism, Automorphism Patrtitioning, and Canoni@al
Labeling Can Be Solved in Polynomial Time for Molecular Graphg8s3
J. Chem Inf. Comput. Sc1998 38, 432-444. 484
Luks, E. M. Isomorphism of Graphs of Bounded Valence Can Be5
Tested in Polynomial TimeJ. Comput. Syst. Scl1982 25, 42—65. 486

BATCH:

487
488
489
490
491
492
493
494
495
496
497
498
499
500

ci2all USER: jeh69 DIV: @xyv04/datal/CLS_pj/GRP_ci/JOB_i02/DIV_ci0341823 DATE: December 24, 2003

J J. Chem. Inf. Comput. Sci. PAGE EST: 9.2 BRULON ET AL.

(8) Wong, H.-W.; Li, X.; Swihart, M. T.; Broadbelt, L. J. Encoding (13) Balaban, A. T. Highly Discriminating Distance-Based Topologicab1
Polycyclic Si-Containing Molecules for Determining Species Unique- Index. Chem. Phys. Lettl982 89, 399-404. 502
ness in Automated Mechanism GeneratidrChem. Inf. Comput. Sci. (14) Jeong, H.; Tombor, B.; Albert, R.; Oltval, Z. N.; Barabasi, A. L. Theo3
2003 43, 735-742. Large-Scale Organization of Metabolic Network&ature200Q 407, 504

(9) Freemantle, M. Unique Labels for Compoun@hem. Eng. News 651-654. 505
2002 80, 33—35. (15) Maslov, S.; Sneppen, K. Specificity and Stability in Topology @06

(10) Hopcroft, J. E.; Tarjan, R..Bsomorphism of Planar Graphs. In Protein NetworksScience2002 296, 910-913. 507
Complexity of Computer Computatiomdiller, R. E., Thatcher, J. W., (16) Colbourn, C. J.; Dinitz, J. HThe CRC Handbook of Combinatorial508
Eds.; Plenum Press: New York, 1972; pp 3350. Designs CRC Press: Boca Raton, FL, 1996. 509

(11) http://dtp.nci.nih.gov/docs/3d_database/structural_information/ (17) Cerius2 SoftwargAccelrys: San Diego, CA, 2003. 510
structural_data.html.)) o (18) Sybyl SoftwargeTripos: St. Louis, MO, 2003. 511

(12) Rucker, C.; Rucker, G.; Meringer, M. Exploring the Limits of Graph (19) MDL Information Systems Inc.: San Leandro, CA, 2003. 512

Invariant- and Spectrum-Based Discrimination of (Sub)structures.
Chem. Inf. Comput. Sc2002 42, 640-650. C10341823 513

